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A B S T R A C T   

The engagement of secondary tasks, like using a phone or talking to passengers while driving, could introduce 
considerable risks to driving safety. This study utilizes a near-crash dataset extracted from a naturalistic driving 
study to explore the patterns of near-crash events with or without the involvement of secondary tasks as a 
surrogate approach to understand the impact of these behaviors on traffic safety. The dataset contains infor-
mation about driver behaviors, such as secondary tasks, vehicle maneuvers, other conflict vehicles’ maneuvers 
before and during near-crash events, and the driving environment. The patterns for near-crashes with or without 
the involvement of secondary tasks are mined by adopting the apriori association rule algorithm. Finally, the 
mined rules for the near-crash events with or without the involvement of the secondary tasks are analyzed and 
compared. The results demonstrate that near-crashes with the involvement of secondary tasks often occur with 
drivers in a relatively stable and presumably predictable environment, such as an interstate highway with a 
constant speed. This type of near-crash is highly associated with the leading vehicle’s sudden slowing or stopping 
since there is no expectation of any interruptions for these drivers performing the secondary tasks. The most 
common evasive maneuver in this kind of emergency is braking. Near-crashes without the involvement of sec-
ondary tasks is often associated with lane-changing behavior and sideswipe incidents. With shorter reaction time 
and awareness of the driving environment, the drivers in this type of near-crash can often make more complex 
maneuvers, like braking and steering, to avoid a collision. Understanding the patterns of these two types of near- 
crash incidents could help safety researchers, traffic engineers, and even vehicle designers/engineers develop 
countermeasures for minimizing potential collisions caused by secondary tasks or improper lane changing 
behaviors.   

1. Introduction 

Traditionally, the approach adopted by researchers to analyze road 
safety is to observe crash statistics through state-based police-reported 
crash databases or national databases such as the Fatality Analysis 
Reporting System (FARS). These crash databases are usually well 
managed, and information on crashes is well documented. However, the 
information recorded in the database only describes the location fea-
tures and characteristics of crashes after the crash occurrence, such as 
the number of people injured and the number of fatalities. In some 
relatively new and well-maintained databases, there might be a few 
pieces of information that can be related to prior-crash characteristics of 
vehicles, drivers, and the driving environment, including if the driver 
was under the influence of alcohol or drugs or if cell phone use was 
involved (TXDOT, 2020). However, it is generally hard to retrieve 
detailed information about drivers, vehicles, and driving environments 

before the crash occurred. Moreover, research has shown that drivers 
tend to omit certain prior-crash behaviors (e.g., cell phone browsing) in 
their reports, especially when these behaviors led to the incident (Na-
tional Safety Council, 2013; Regev et al., 2017). 

The data to support the analysis of drivers’ behaviors is lacking, so 
not enough is known about the impacts of various behaviors such as 
performing secondary tasks – browsing a phone, texting, talking to 
passengers, interacting with in-vehicle devices, and etc. and vehicle 
maneuvers before and during a safety incident. This study utilized a 
near-crash data extracted from a naturalistic driving study to bridge this 
gap. The naturalistic driving dataset was collected through the Virginia 
Connected Corridor 50 Elite Vehicle Naturalistic Driving Study, and 235 
near-crash events were identified (Kim et al., 2020). Twelve categorical 
variables were used to describe the driver’s behavior, vehicle maneuver, 
and the conflicted vehicle’s maneuver before and during near-crash 
events. Moreover, the variables also contain information about 
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locality, weather, and if the automated driving system (i.e., adaptive 
cruise control and the lane-keeping assistance supporting system) was 
active before the incident. Most importantly, the data reduction team 
from Virginia Tech Transportation Institute (VTTI) manually checked 
video recordings to report if the driver was conducting secondary tasks 
before the incident. Near-crash occurrences have been a reliable surro-
gate source for understanding the nature of crashes. Previous studies 
have shown that near-crashes share many of the same elements of 
crashes (Guo et al., 2010b; Wu et al., 2014). Therefore, the availability 
of these unique categorical data provides an invaluable opportunity for 
us to understand the patterns of near-crashes with or without the 
involvement of the secondary tasks. 

The findings of this research can help transportation safety re-
searchers understand the impact and patterns of secondary tasks on 
near-crash events. Patterns that lead to near-crash events could be 
affected by the involvement of secondary tasks. A combination of 
various factors may pose a great risk to drivers who perform secondary 
tasks while driving, while the same combination of factors may not 
affect a focused driver at all. These in-depth understandings could also 
help mitigate near-crash or crash events by introducing more advanced 
driving safety features, such as secondary task detection devices, to 
vehicles. 

2. Literature review 

Most of the existing safety studies utilized crash databases that often 
contain detailed information about crash characteristics that are 
collected after the crash occurred. However, a conventional crash 
database provides broader contents of driver and vehicle related infor-
mation such as driver gender, driver age, and vehicle type. In many 
cases, these datasets do not provide detailed drivers’ behaviors during 
the pre-crash condition, such as secondary tasks, vehicles’ maneuvers, 
and other vehicles’ movement information before and during the inci-
dent. The driver’s behaviors, such as performance of a secondary task, 
vehicle’s maneuver (e.g., going straight, turning, or decelerating), and 
other potential conflict vehicle’s maneuver before the incident could be 
a crucial indicator of the incident. Several studies have tried to predict 
this behavior using either data collected after the crash occurred or via 
driving simulators. However, the results from the driving simulator data 
are questionable as they may or may not reflect drivers’ actual behaviors 
prior to a real crash (Cheng et al., 2011; Wynne et al., 2019). The use of 
naturalistic data bypasses this step as researchers can proactively and 
accurately collect data with vehicle kinematics variables (e.g., speed, 
acceleration, yaw rate, etc.) and variables related to the driver, weather, 
area, etc. Naturalistic data can also provide valuable information when 
the crash data are inadequate due to rare crash occurrences or the 
construction of a new facility (Guo et al., 2010a). 

In such a case, there is a need for a crash surrogate as the number of 
crashes with prior-crash information is low, and naturalistic data pro-
vides ample options for a surrogate choice. A wide range of surrogate 
measures has been explored within the current literature. Some studies 
have used a traffic conflict-based technique to measure safety. However, 
the validity and the reliability of this surrogate measure have been 
questionable (Guo et al., 2010a), and research has indicated that it has a 
weak relationship with the crash rate (Gettman et al., 2008; Gettman 
and Head, 2003; Zheng et al., 2014a). Nevertheless, it remains a popular 
method and is still used in some more recent studies (Sayed et al., 2013; 
So et al., 2015; Uzondu et al., 2018). Some of the other popular crash 
surrogates used by highway safety researchers are the time to collision 
(Jiang et al., 2015; Nadimi et al., 2020; Vogel, 2003), post encroachment 
time (Chandrapp et al., 2016; Paul and Ghosh, 2020; Tang and Kuwa-
hara, 2011), deceleration rate (Strauss et al., 2017), extreme value 
theory (Songchitruksa and Tarko, 2006; Wang et al., 2018; Zheng et al., 
2014b), and counterfactual approach (Bärgman et al., 2015; Davis et al., 
2008). In the present study, we used near-crash data as a surrogate 
measure for naturalistic driving data. 

Near-crashes can provide insights into driver behavior during critical 
crash scenarios and help differentiate key elements of successful crash 
avoidance maneuvers versus unsuccessful ones (Seacrist et al., 2020). In 
previous studies (Guo et al., 2010a; Wu et al., 2014), it was found that 
near-crashes share many of the same elements as crashes, and there is a 
strong positive relationship between the variable frequencies of crashes 
and near-crashes. As highlighted in Table 1, some studies have used 
near-crashes as a surrogate measure for naturalistic data and found 
many variables that significantly affect crash risk. Wu et al. (2014) 
found that drivers under the age of 25 are more likely to be engaged in 
near-crashes and crashes. A similar result was obtained by Seacrist et al., 
who found near-crash rates to decrease with increasing age considerably 
(Seacrist et al., 2020). Guo et al. (2013) found the driver’s experience to 
be a more sensitive variable and suggested that newly licensed drivers 
should be monitored and limited to specific driving conditions. Some 
researchers found roadway characteristics such as the presence of a 
median (Wu and Jovanis, 2012), the presence of a vertical curve 
(Hamzeie et al., 2017), or the road type (Naji et al., 2018) to be influ-
ential, while others found traffic characteristics such as traffic density 
(Tian et al., 2013) or road congestion (Su et al., 2017) to be more sig-
nificant. Similarly, as indicated in Table 1, many factors were found to 
influence crash-risk using near-crash as a surrogate measure. 

One of the most prominent factors that affect near-crashes and 
crashes, as revealed by many of the published studies, is distracted 

Table 1 
Studies investigating crash risk and factors affecting it using near-crash as a 
surrogate.  

Factor affecting crash 
risk 

Database Papers 

Vehicle kinematics 

100-Car 
NDS 

(Taccari et al., 2018; Wu and Jovanis, 2012) 

SHRP2 
(Hamzeie et al., 2017; Osman et al., 2019;  
Perez et al., 2017) 

Other 
(Naji et al., 2018; Perez et al., 2017; Su 
et al., 2017; Wang et al., 2015) 

Roadway 
characteristics 

100-Car 
NDS 

(Wu and Jovanis, 2012) 

SHRP2 (Hamzeie et al., 2017) 
Other (Naji et al., 2018; de Rome et al., 2018) 

Traffic characteristics 
100-Car 
NDS (Jovanis et al., 2011; Tian et al., 2013) 

Other (Su et al., 2017) 
Environmental/ 

lighting conditions 
100-Car 
NDS 

(Jovanis et al., 2011; Klauer et al., 2006; Wu 
and Jovanis, 2012)  

Other (Su et al., 2017) 
Alcohol/Drug Use SHRP2 (Arvin and Khattak, 2020)  

Other (Beck et al., 2019; Ogeil et al., 2018) 

Driver Age / Driver 
experience 

100-Car 
NDS (Jovanis et al., 2011; Wu et al., 2014) 

SHRP2 
(Hamzeie et al., 2017; Seacrist et al., 2020, 
2018) 

Other (Guo et al., 2013; Lee et al., 2011; Naji et al., 
2018) 

Driver behavior / 
characteristics 

100-Car 
NDS 

(Guo and Fang, 2013) 

SHRP2 
(Huisingh et al., 2017; Markkula et al., 
2016) 

Other (Ashouri et al., 2018; Cheng et al., 2011) 

Distracted driver / 
Secondary task 

100-Cas 
NDS 

(Klauer et al., 2014, 2006; Liang et al., 
2014, p., 2012; Tian et al., 2013) 

SHRP2 
(Arvin and Khattak, 2020; Bakhit et al., 
2018; Bálint et al., 2020; Dingus et al., 2016; 
Huisingh et al., 2019; Ye et al., 2017) 

Other 

(Bakiri et al., 2013; Cunningham and Regan, 
2018; Ersal et al., 2010; Esfahani et al., 
2019; Farmer et al., 2015; Klauer et al., 
2015; Miller et al., 2015;  
Oviedo-Trespalacios et al., 2017;  
Simons-Morton et al., 2014; Tivesten and 
Dozza, 2014; Wandtner et al., 2018) 

Note: NDS stands for Naturalistic Driving Study. 

X. Kong et al.                                                                                                                                                                                                                                    



Accident Analysis and Prevention 157 (2021) 106162

3

driving. Dingus et al. (2006) found distracted driving to be a factor in 
approximately 80 % and 65 % of all crashes and near-crashes, respec-
tively. The National Highway Traffic Safety Administration (NHTSA) 
also estimated that nearly 23,000 deaths in the U.S. from 2012 to 2018 
occurred because of distracted driving (NHTSA, 2019). A major source 
of distraction for drivers is engagement in secondary tasks (Regan et al., 
2008; Stutts et al., 2001). Ranney estimated that an average driver is 
involved in performing secondary tasks for almost 30 % of their driving 
time (Ranney, 2008). Involvement in secondary tasks like cell phone 
holding/dialing (Bálint et al., 2020; Klauer et al., 2014), texting (Arvin 
and Khattak, 2020; Bakhit et al., 2018; Bálint et al., 2020), reaching for 
an object (Arvin and Khattak, 2020; Bakhit et al., 2018; Bálint et al., 
2020), or manipulating objects (Bakhit et al., 2018) are shown to reduce 
driver’s attentiveness to the road and subsequently increase crash-risk. 
The present study utilizes the database from Virginia Connected 
Corridor 50 Elite Vehicle Naturalistic Driving Study or VCC50 Elite NDS 
(Kim et al., 2020), which covers all of the above factors. 

Since naturalistic driving data can consist of a large plethora of in-
formation with many variables that influence crash risk, researchers are 
increasingly adopting various Machine Learning (ML) techniques 
because of their ability to handle complex multi-dimensional data, high 
training and testing accuracy, and low prediction time. Ersal et al. 
(2010) and Ye et al. (2017) deployed Artificial Neural Networks (ANNs) 
for analyzing driver performance while performing secondary tasks. 
Wang et al. (2015) used classification and regression tree (CART) to 
establish a relationship between crash-risk and road, vehicle, and driver 
characteristics. Using Logistic regression on survey data, Oviedo-Tres-
palacios et al. (2017) inspected the influence of phone usage on road 
safety. Similarly, Mousa et al. (2019) and Osman et al. (2019) analyzed 
naturalistic data using Extreme Gradient Boosting (XGBoost) and Ada-
Boost, respectively, to identify various factors contributing to 
near-crashes. 

Even with the increasingly accessible naturalistic driving data, 
datasets that provide detailed information about drivers, vehicles, and 
other potential conflict vehicles before and during the near-crash in-
cidents are still rare. This study utilized a valuable near-crash dataset 
extracted from a naturalistic driving study and recorded videos provided 
by VTTI. This dataset contains rich information about the driver, vehicle 
maneuver, and other vehicles’ maneuver before and during the near- 
crash incidents. To mine associations among these categorical features 
regarding the involvement of secondary tasks, the Aprorio algorithm has 
been adopted for this research. 

This paper is presented in the following manner. First, the paper 
provides the introduction to identify the research gap and elaborate on 
the uniqueness of the research. Then, the literature review section de-
scribes previous studies that explain the necessity of studying near-crash 
events and secondary tasks, the utilization and popularity of naturalistic 
driving data, the findings of previous near-crash studies, and the 
uniqueness of the used dataset. The following methodology section 
discusses the dataset and association rules. Then, the results of mined 
association rules are presented and explained. After this section, the 
summary of findings and comparison between two sets of rules are given 
to provide more insights. Finally, the conclusion and limitations are 
discussed. 

3. Methodology 

The purpose of this research is to mine patterns among near-crash 
incidents. To detect the associations between near-crash incidents 
with or without the involvement of the secondary tasks and available 
categorical variables, association rule mining is an appropriate candi-
date for data mining. As the study is designed for an unsupervised 
learning framework, apriori association rule mining method serves the 
purpose well. The purpose of this study is to mine the patterns among 
the near-crash incidents with or without secondary tasks involvement by 
exploring a categorical dataset. Apriori algorithm is a great candidate 

for finding association among categorical variables. The other reasons 
are the applicability and interpretability. This study initially examined 
other rules mining algorithms such as ‘Eclat’ algorithm. As apriori 
provides different performance measures such as support, confidence, 
and lift, this study considered apriori as the suitable approach. Rules 
mining method has some advantages compared to statistical or machine 
learning model. This method can provide evidence of higher probability 
scores of some hidden patterns with a combination of variable cate-
gories, which is difficult to attain in a statistical model. The rules mining 
method is not a black box method like many machine learning algo-
rithms. Thus, association rule mining is an appropriate candidate for 
data mining to detect the associations between near-crash incidents with 
or without the involvement of the secondary tasks and available cate-
gorical variables. Agrawal and Srikant proposed the first association rule 
mining algorithm in 1994, known as the Apriori algorithm. In recent 
years, this method has been used in many research fields, including 
transportation research. For example, Xu and Luo (2020) utilized this 
method for risk prediction and early warning of air traffic controllers’ 
unsafe acts in 2020. Kong et al. (2020) also used this algorithm to mine 
the associations between speeding behavior and roadways’ geometric 
features (Kong et al., 2020), and Das et al. (2019) explored association 
rules among the hit and run crashes. 

It is important to understand the term “transaction” in order to un-
derstand the Apriori algorithm. A transaction is considered an event, 
including a set of items. For example, for a shopping event, all the 
shopping items on the shopping receipt are considered a set of items 
consisting of a transaction. For crash data analysis, all variables asso-
ciated with a crash can be considered as a set of items, and one crash can 
be considered as one transaction. This algorithm can detect patterns if 
the categorical variables frequently occur together under certain pre-set 
thresholds. 

The categories of each near-crash event are considered as a set of 
items: I={i1, i2, … im}. The transaction dataset is T = {t1, t2, …, tm}, 
where each ti consists of a subset of categories from I. The other two 
terms to understand the association rule are Antecedent and Conse-
quent, or X and Y. Mined association rule can be written as X → Y, Where 
X and Y are disjointed categories from item sets. Many combinations of 
rules can be mined through the categorical dataset. Fortunately, not 
every one of them is meaningful or remarkable. Three critical mea-
surements are used for evaluating the performance and filtering out 
meaningful association rules. The measurement metrics are Support, 
Confident, and Lift. The Support in this study represents the percentage of 
transactions containing the combination of X and Y in all transactions. In 
other words, support says how often these X and Y appear together. N in 
the following equation equals the total number of transactions. 

S(X → Y) =
count(X ∪ Y)

N 

Confidence means the percentage of transactions containing X → Y in 
all transactions containing X. 

C(X → Y) =
S(X ∪ Y)

S(X)

The critical performance measure is Lift. Lift describes the inde-
pendence between X and Y. A lift value higher than 1 indicates the 
strong dependence among the antecedent and consequent. Otherwise, a 
small life value demonstrates the weak association between them. While 
during the rules mining process, the definition of a 2-item rule is that an 
association rule contains a 1-item antecedent and 1-item consequent. 
Similarly, a 3-item rule is a combination of a 2-item antecedent and a 1- 
item consequent. In this study, the consequent is always the {secondary 
task = yes} for near-crash events with the involvement of secondary 
tasks dataset and {secondary task = no} for the near-crash event without 
the involvement of secondary tasks dataset. 
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3.1. Dataset overview 

The naturalistic driving dataset is collected through the Virginia 
Connected Corridor 50 Elite Vehicle Naturalistic Driving Study (Kim 
et al., 2020). The original VCC50 Elite dataset was collected from 50 
connected vehicles with automated driving features, such as adaptive 
cruise control and lane-keeping assistance. The recruited drivers came 
from and commuted in the Washington, DC metro area for 12 months. 
The age of these drivers is from 24 to 76. In 12 months of the data 
collection period, 684, 931 miles were driven by all participants. The 
NDS equipment was able to collect data from driver, vehicle, and 
environmental factor perspectives. The kinematic thresholds of defining 
the near-crash event adopted by the data reduction team from VTTI, that 
conducted multiple NDSs studies (Dingus et al., 2016; Scofield, 2015; 
Simons-Morton et al., 2014). Broadly, a near-crash event is defined as a 
non-crash incident with an evasive braking maneuver reaching -0.3 g if 
the object being avoided is extremely close. For light 4-wheeled vehi-
cles, which is the vehicle type of the recruited drivers, the criteria are a 
less-than-2-second “Time to Collision” measurement (Scofield, 2015). 
Elevated g-force events were also assessed, including longitudinal 
deceleration/hard braking (<-0.45 g), hard left (<-0.50 g) and hard 
right turn (>0.50 g), and yaw rate higher than 6 degrees in 3 s 
(Simons-Morton et al., 2014). To accurately identify these near-crash 
events, using the criteria mentioned above and kinematic data to iden-
tify the potential near-crash events is the first step. After identifying 
these potential near-crash events, trained data reductionists inspected 
all video recordings (30-second epoch) to visually verify the occurrence 
of the events and also collected related information, such as secondary 
tasks, evasive behaviors, reaction time, etc. (Kim et al., 2020a, 2020b). 
These behavioral-related variables, such as maneuvers, secondary tasks, 
reaction times, and driving environment-related variables, such as an 
object on the road, other vehicle-turning, are documented by the trained 
data reductionists based on the most recent published coding protocols 
and data dictionaries (Russell et al., 2018; Scofield, 2015).There are 235 
safety-critical events – near-crash incidents extracted from the whole 
NDS dataset and manually coded by the VTTI data reduction team (Kim 
et al., 2020). VTTI researchers code a series of categorical variables 
about driver, vehicles, and the driving environment to describe the 
characteristics of the near-crash events. 

3.2. Used variables 

There are 12 categorical variables in the dataset to describe all near- 
crash events (see Table 2). The raw data published by VTTI contains 
several additional variables that were removed during analysis due to 
heavily skewed distribution or with a large percentage of missing values. 
For example, the data contains a variable to describe the road surface 
conditions (dry or wet). 216 out of 235 events were on the roadways 
with dry surface conditions. There are also two variables describing the 
multiple secondary tasks performed by the drivers at the same time. 
These variables are described as secondary task 1, secondary task 2. 
There are only about 10 out of 235 drivers who performed secondary 
task 2. To avoid generating misleading results, the secondary task 2 
variable was removed. These variables can be categorized into vehicle- 
related driver-related, driving-environment related variables. Vehicles- 
related variables are related to the maneuver of the vehicle before and 
during the near-crash events and the automated driving system’s status, 
like if adaptive cruise control or lane-keeping assistance was active 
when the near-crash event happened, the maneuver of the vehicle before 
and during the event. Driver-related variables are driver’s behavior 
before the near-crash events, such as distracted, reaction time to the 
emergency, or if the driver was performing a secondary task if the driver 
had both hands on the wheel, and the driver’s reaction time. Secondary 
task is the key variable for this study. This secondary task variable de-
scribes the drivers’ undertaking tasks, except driving, before the near- 
crash occurred. These tasks include cell phone browsing, calling, 

texting, hand-hell talking, talk to passengers, interact with pet, eat, 
drink or smoke, operate in-vehicle devices, etc. The driving 
environment-related variables are other vehicles’ maneuvers before the 
near-crash, locality, and weather. Several variables are describing the 
nature of the near-crash event, such as incident type. 

3.3. Distribution of key attributes 

Note that rules mining is very effective in identifying trends from a 
large dataset. However, rules mining has been widely used based on the 
complexity of the data regardless the sample size. For example, our data 
contains 12 variables with several categories in each variable. The 
proportion distribution of all of these categories for two separate 

Table 2 
Variable description.  

Variable Attribute Description 

Premaneuv 

changelane changing lanes 
curve negotiating a curve 
start_stop starting/stopped in traffic lane 
straight_acc going straight, accelerating 
straight_cons going straight, constant speed 
straight_dec going straight, decelerating 
turning turning right/left 

Preevent 

objinroad object in roadway 
otherveh_langchange other vehicle lane change 
otherveh_slow/stop other vehicle slowed and stopped 
otherveh_turning other vehicle turning 
subject_lanchange subject lane change 
subject_turning subject turning 

Eventnature 

conflict_adjacent 
conflict with a vehicle in an adjacent 
lane 

conflict_following conflict with the following vehicle 
conflict_lead conflict with a lead vehicle 
conflict_obj conflict with an object 
conflict_turning conflict with a turning vehicle 
conflict_unknown unknow conflict 

Incidenttype 
others others 
rear-end rear-end, struck 
sideswipe sideswipe 

Evasivemaneuv 

brakedandsteered braked and steered 
brakedonly braked only 
noreaction no reaction 
steered steered 

Driverbehav 

distracted distracted 

improperdriving 
cutting in, improper lane change, 
aggressive, right of way error 

none none 

Handsonwheel 
both both hands on the wheel 
none no hands on the wheel 
onehand one hand on the wheel 

Weather 
clear/partly cloudy clear, partly cloudy weather 
overcast/raining overcast, raining weather 

Locality 

business/industrial business, or industrial areas 
interstate/divided 
hwy 

interstate or divided highway 

residential residential areas 

ACC_LKA 
no adaptive cruise control and lane- 

keeping assistance not active 

yes 
adaptive cruise control or lane-keeping 
assistance, or both active 

Reacttime 

shorter than 0.5 s 
0− 0.5 seconds from conflict started to 
start to react 

0.5− 1 sec 0.5− 1 second from conflict started to 
start to react 

longer than 0.5 s 
longer than 1 s from conflict started to 
start to react 

Secondary task 

no 
no secondary task was observed before 
the near-crash event occurred 

yes 

Some kind of secondary task was 
observed before the near-crash 
occurred. Secondary tasks include cell 
phone browsing, calling, texting, hand- 
held talking, talk to passengers, interact 
with pet, eat, drinking or smoking, etc.  
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datasets makes the data worthy for investigation by using association 
rules mining. 

Table 3 describes the data in two categories: secondarytask = yes and 
secondarytask = no. There are 235 near-crash events in this dataset. One 
hundred and thirty near-crash events involve performing secondary 
tasks. One hundred and five near-crash events are without the 
involvement of any secondary tasks. For each selected variable, the 

count across different levels of each category are not evenly distributed. 
For example, the variable "premanuev" describes the vehicle maneuver 
behavior before a near-crash event. For the near-crash event with the 
involvement of secondary tasks, the majority of vehicles in this category 
were going straight with constant speed. In another category, the near- 
crash without the involvement of secondary tasks, vehicles may go 
straight with constant speed or perform lane changes. 

Table 3 
Distribution of Key Attributes.  

X. Kong et al.                                                                                                                                                                                                                                    
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4. Results 

To explore the patterns for near-crash events with and without per-
forming secondary tasks, the Apriori association rules algorithm has 
been applied to the near-crash dataset with supervised right-hand side 
item – "secondary task = yes" or "secondary task = no." Moreover, this 
study mines the patterns with a different number of items, which are 2- 
item, 3-item, and 4− 5-item. In these mined rules of near-crash events 
with secondary tasks, there is one fixed item – "secondary task = yes." 
For the mined rules of near-crash events without secondary tasks, the 
fixed item is" secondary task = no." Investigating the patterns through 
multiple iterations based on the total number of items in the mined rules 
could provide more insights than mining rules with only one iteration, 
which mines all rules with various items together. 

4.1. Summary of parameter setting and parameters in outcomes 

Table 4 introduces the chosen parameter values for the Apriori al-
gorithm utilized in this study. The parameter values for mining 2-item 
rules and 3-item rules are the same. The minimum support threshold 
is set as 0.05, and the minimum confidence value is set as 0.1. For 4− 5- 
item rules, the support value threshold is 0.1, and the value of confi-
dence keeps the same. Many rounds of testing and evaluation were done 
before defining final thresholds. The criteria for choosing proper 
thresholds for the parameters is to mine reasonable rules and ensure the 
stability of the model performance. This process may suffer a certain 
level of subjectivity. Thus, a thorough understanding of the purpose of 
these parameters is necessary for finding reasonable thresholds. First, 
the minimum support value should an optimized value to ensure the 
pattern (an itemset) presented in a reasonable number of observations. 
For example, for 2-item rules, 0.05 minimum support indicates, in this 
analysis, an itemset only be considered as a candidate itemset if it shows 
in at least 0.05*235 ≅ 12 out of 235 observations. 12 out of 235 may 
appear to be a small amount. However, an association rule containing 
this itemset would be worthy of reporting if the lift value of this rule is 
high. A high lift value suggests the strong dependency between this 
itemset and Consequent (secondary = yes or no, in this case). This is also 
one of the advantages of using this method to mine the meaningful 
patterns through a categorical dataset with some less frequent but 
important items. For example, an itemset {Eventnature = conflict_lead +
Reacttime = longer than 1 s} may not be a frequent itemset and has a 
minimum support value 0.01. However, this rule is worth reporting if its 
lift value is high for {secondary take = yes}., which indicates that this 
itemset is highly associated with secondary tasks. In plain words, it may 
less often to observe the conflict with a leading vehicle and take a 
relatively long reaction time. However, this could often occur if the 
driver was performing secondary tasks and being distracted. With the 
minority presentation in the dataset, traditional statistical methods, 
such as logistic regression, may not be capable of identifying this 
pattern. 

Table 5 shows a summary of the values of the evaluation parameters 
of all mined association rules. The number of rules and mean, min., and 
max. The support, confidence, and lift values are reported. There are 31 
and 27 2-item rules mined for near-crash events without and with sec-
ondary tasks, separately. There are 189 and 164 3-item rules mined for 
near-crash events without and with secondary tasks. For 4− 5-item rules 
from the near-crash events without and with secondary tasks, the 
number are 184 and 71. The mean support value of all rules is above 0.1. 

The mean confidence value of all rules is higher than 0.45, and the mean 
of the lift value is above 1.02. The maximum value of support, confi-
dence, and lift among all rules are 0.42, 0.92, and 2.07. 

4.2. Performance evaluation 

Table 5 lists the number of rules for each of the datasets. It is nearly 
impossible to explain each and every rule. To get an overall under-
standing of the number of rules and associated performance matrices, 
two-key plots are excellent data visualization tools (see Fig. 1 and 
Fig. 2). The x-axis is the value of support of mined rules, and the y-axis is 
the value of confidence of mined rules. Fig. 1 indicates the distribution 
of these parameter values of mined rules for near-crash events with 
secondary tasks. Fig. 1 shows that the two-key plot of 2-item rules shows 
the range of support value of all 2-item rules is from 0.05 to 0.4, and the 
majority of these rules have more than 40 percent confidence. For the 
two-key plot of the 3-item rules, the range of support value is from 0.05 
to 0.3, and the majority of these rules have more than 40 percent con-
fidence. A similar trend is seen for 4− 5-item rules. The 4-item rules are 
in purple color, and the 5-item rules are in red color. 

Fig. 2 shows the two-key plots for rules of near-crash events without 
secondary tasks. The ranges of support value across 2-item, 3-item, and 
4-item groups are 0.05 – 0.4, 0.05 – 0.3, and 0.05− 0.25. The ranges of 
the support value are similar to the above Fig. 1. However, the confi-
dence value for the majority of rules of near-crash without secondary 
tasks is higher than 50 percent, which is generally higher than rules of 
near-crash events with secondary tasks. 

4.3. Interpretation of rules with high lift measures 

As shown in Table 5, there are 58 2-item association rules, 353 3- 
item association rules, and 255 4− 5-item rules mined from the near- 
crash dataset. It is impossible and unnecessary to interpret all of these 
mined rules. All of these rules satisfied the support and confidence 
thresholds. The ones with the highest lift value are the ones most 
interesting. Tables 6 and 7 contain 26 association rules for near-crash 
events with secondary tasks and near-crash events without secondary 
tasks. In these 26 rules, 6 rules from 2-item rules, 10 rules from 3-item 
rules, and 10 rules from 4− 5-item rules are selected. These rules are 
selected based on their high lift values and usefulness for identifying 
meaningful patterns. Although the Apriori is an unsupervised rule 
mining algorithm, the function still provides an alternative to fix the 
right-hand side (RHS) item. Thus, the rule mining process becomes less 
random and more supervised because the fixed RHS item ensures that all 
mined rules are associated with or contained in this item. The rest of the 
rules (without this designated RHS item, which is mentioned in the subs- 
section heading and rule descriptions) are described below. 

4.3.1. Patterns for Near-Crash events with secondary tasks 

4.3.1.1. 2-item rules. The first six rules in Table 6 are 2-item rules. One 
item is the fixed RHS item – {secondary task = yes}. The first rule with the 
highest lift value is {driverhehav = distracted, secondary task = yes}. It 
is intuitive to understand this rule. Most secondary tasks would distract 
drivers’ attention rather than focus on driving. The corresponding 
evaluation indices are support = 15 %, confidence = 77 %, and lift =
1.71. To understand these indices, a detailed explanation can be found 
in the methodology section. Here is a brief interpretation. The value of 
support indicates 15 % near-crash events has these two items {driv-
erhehav = distracted} and {secondary task = yes}. The value of confidence 
means that out of all near-crash events has {driverhehav = distracted}, 
77 % of them were performing secondary tasks. The value of lift is 1.71, 
which says two items in this rule are highly dependent. In other words, 
the distracted behavior of a driver is highly associated with performing 
secondary tasks. As mentioned earlier, when the lift value higher than 1, 

Table 4 
Parameters values selected for rules mining.  

Rule Types Min. Support Min. Confidence Minlen Maxlen 

2-item rules 0.05 0.1 2 2 
3-item rules 0.05 0.1 3 3 
4− 5-item rules 0.1 0.1 4 5  
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it indicates a strong or high association among the items. Otherwise, it 
indicates a weak association between the items in the rule. 

Other rules in this 2-item rule set also demonstrate interesting as-
sociations. The second rule 

{Eventnature = conflict_lead, secondary task = yes} indicates that near- 
crash event with secondary tasks is highly associated with conflicting 
with the leading vehicle. Third rule {Preevent = otherveh_slow/stop, sec-
ondary task = yes} says this conflict often occurs with the other vehicle 
suddenly slowed or stopped. For drivers who perform secondary tasks 
while driving, it is very likely that they conduct secondary tasks when 
the driving environment is predictable, from their perspectives. There-
fore, these unexpected sudden slow down or stop behaviors of the 
leading vehicle would trigger them to hard break and being involved in 
these crash or near-crash events. The fourth rule {Reacttime = longer than 
1 s, secondary task = yes} and the sixth rule {Reacttime = 0.5− 1 sec, 
secondary task = yes} also associate the near-crash with secondary tasks 
with a relatively longer reaction time to the emergency(considering 3 
reaction categories in the dataset: shorter than 0.5 s, 0.5− 1.0 s and long 
than 1 s). The fifth rule {Premaneuv = straight_dec, secondary task = yes} 
associates the near-crash event with a secondary task with the maneuver 
(going straight and deceleration) of the vehicle before the near-crash 

event. The high association of this combination of a vehicle going 
straight and decelerating, a driver performing a secondary task, and a 
near-crash event indicates that a common near-crash scenario is insuf-
ficient breaking behavior caused by performing the secondary task and 
poor judgment on the driving environment. 

4.3.1.2. 3-item rules. Rules 7–16 are ten 3-item rules. A 3-item rule 
contains two items in the antecedent column and a fixed RHS item – 
{secondary task = yes}. The rule with the highest lift value is rule 7 – 

{Preevent = otherveh_slow/stop, Driverbehav = distracted, secondary 
task = yes}. The corresponding indices are support = 10 %, confidence =
90 %, and lift = 2.07. Out of the near-crash events in the whole dataset 
contain the antecedent item {Preevent = otherveh_slow/stop, Driverbehav 
= distracted}, 92 percent of them performed the secondary tasks. The 
association of these three items is strong. The near-crash often occurs 
when the leading vehicle suddenly slowed or stopped while the driver is 
distracted by the secondary tasks. For near-crashes with secondary tasks, 
the rules frequently show the drivers’ evasive maneuver was braking 
only. This pattern presents in rules 8, 12, 13, and 14. The dominant 
evasive response of these drivers performing the secondary tasks is to 
brake only to avoid a collision. Performing secondary tasks often 

Table 5 
Summary of the parameter values of mined rules.  

Consequent (Secondary Task) # items # rules 
Support Confidence Lift 

Mean Min. Max. Mean Min. Max. Mean Min. Max. 

No 2 31 0.19 0.05 0.42 0.56 0.39 0.74 1.02 0.71 1.35 
Yes 2 27 0.16 0.05 0.36 0.45 0.26 0.77 1.02 0.57 1.71 
No 3 189 0.12 0.05 0.30 0.60 0.32 0.86 1.09 0.58 1.55 
Yes 3 164 0.10 0.05 0.27 0.50 0.22 0.92 1.11 0.48 2.07 
No 4− 5 184 0.13 0.10 0.22 0.67 0.38 0.86 1.21 0.69 1.55 
Yes 4− 5 71 0.12 0.10 0.20 0.61 0.32 0.92 1.38 0.72 2.07  

Fig. 1. Two-key plots for ’secondary task = yes’.  

Fig. 2. Two-key plots for ’secondary task = no’.  
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distracts drivers, and distracted drivers have relatively longer reaction 
times (in rules 9, 10, 11, 14, and 16). Longer reaction time leads to less 
time for the driver to properly respond, like brake and steer maneuver. 
This could explain why the {Evasivemaneuv = brakedonly} dominantly 
presented in many rules. Rule 16 shows the {Locality = interstate / 
divided hwy, Reacttime = longer than 1 s} is strongly associated with the 
secondary tasks. This indicates that the near-crash events with second-
ary tasks occurring on the interstate/divided highway often take longer 
than 1 s reaction time. This combination suggests that drivers on the 
highway who perform the secondary tasks may not be cautious enough 
of the potential risks. The traffic status on the highway is often stable 
and predictable in a short time period, and a longer reaction time is 
required when the near-crash events occurred. 

4.3.1.3. 4− 5-item rules. Rules 17–26 are rules with 4 or 5 items. These 
ten rules show the patterns discussed above more clearly. The combi-
nation of different items shows strong association with near-crash events 
with secondary tasks. For example, rule 17 {Preevent = otherveh_slow / 
stop, Eventnature = conflict_lead, Driverbehav = distracted, secondary task 
= yes} shows that the near-crash event with a secondary task occurs 
when the other leading vehicle suddenly slowed or stopped and drivers 
were distracted, and the event nature is often classified as conflict with 
leading vehicle (rules 17, 19, 21, 23). Other rules also demonstrate that 
near-crash with secondary tasks are highly associated with rear-end 
incident type (rules 18, 20–25). Most near-crashes with leading vehi-
cles are classified as rear-end incidents. Another interesting rule is the 
rule 21 {Preevent = otherveh_slow / stop + Eventnature = conflict_lead +
Incidenttype = rear-end + Handsonwheel = onehand, secondary task =

Table 6 
Selected rules for near-crash events with secondary tasks.   

Antecedent S C L 

No. 2-item rules ("supervised" item: secondary task 
¼ yes)    

1 Driverbehav = distracted 0.15 0.77 1.71 
2 Eventnature = conflict_lead 0.17 0.61 1.36 
3 Preevent = otherveh_slow/stop 0.17 0.60 1.34 
4 Reacttime = longer than 1 s 0.11 0.59 1.31 
5 Premaneuv = straight_dec 0.07 0.57 1.27 
6 Reacttime = 0.5− 1 sec 0.17 0.51 1.15  

3-item rules ("supervised" item: secondary task 
¼ yes)    

7 Preevent = otherveh_slow/stop + Driverbehav =
distracted 

0.10 0.92 2.07 

8 Evasivemaneuv = brakedonly + Driverbehav =
distracted 

0.09 0.88 1.96 

9 Eventnature = conflict_lead + Reacttime = longer 
than 1 s 

0.05 0.86 1.92 

10 Incidenttype = rear-end + Reacttime = longer than 
1 s 

0.10 0.74 1.66 

11 Hansonwheel = both + Reacttime = longer than 1 s 0.06 0.72 1.62 
12 Eventnature = conflict_lead + Evasivemaneuv =

brakedonly 
0.13 0.68 1.53 

13 Preevent = otherveh_slow/stop + Evasivemaneuv =
brakedonly 

0.13 0.67 1.49 

14 Evasivemaneuv = brakedonly + Reacttime = longer 
than 1 s 

0.06 0.65 1.46 

15 Premaneuv = straight_cons + Preevent =
otherveh_slow/stop 

0.06 0.63 1.40 

16 Locality = interstate/divided hwy + Reacttime =
longer than 1 s 

0.07 0.59 1.31  

4¡5-item rules ("supervised" item: secondary 
task ¼ yes)    

17 Preevent = otherveh_slow/stop + Eventnature =
conflict_lead + Driverbehav = distracted 

0.10 0.92 2.07 

18 Incidenttype = rear-end + Driverbehav = distracted 
+ ACC_LKA = no 

0.10 0.80 1.79 

19 Preevent = otherveh_slow/stop + Eventnature =
conflict_lead + Evasivemaneuv = brakedonly +
ACC_LKA = no 

0.11 0.75 1.68 

20 Preevent = otherveh_slow/stop + Incidenttype =
rear-end + Evasivemaneuv = brakedonly + Weather 
= clear/partly cloudy 

0.10 0.73 1.63 

21 Preevent = otherveh_slow/stop + Eventnature =
conflict_lead + Incidenttype = rear-end +
Hansonwheel = onehand 

0.11 0.66 1.47 

22 Incidenttype = rear-end + Locality = business/ 
industrial + ACC_LKA = no 

0.11 0.63 1.40 

23 Preevent = otherveh_slow/stop + Eventnature =
conflict_lead + Incidenttype = rear-end 

0.17 0.62 1.39 

24 Incidenttype = rear-end + Evasivemaneuv =
brakedonly + Hansonwheel = onehand + ACC_LKA 
= no 

0.12 0.61 1.36 

25 Incidenttype = rear-end + Evasivemaneuv =
brakedonly + Locality = interstate/divided hwy +
ACC_LKA = no 

0.11 0.52 1.17 

26 Evasivemaneuv = brakedonly + Locality =
interstate/divided hwy + ACC_LKA = no 

0.11 0.50 1.12 

* S-support, C-confidence, L-lift. 

Table 7 
Selected rules for near-crash events without secondary tasks.   

Antecedent S C L  

2-item rules ("supervised" item: secondary task ¼
yes)    

1 Premaneuv = changelane 0.15 0.74 1.35 
2 Evasivemaneuv = steered 0.06 0.70 1.27 
3 Incidenttype = sideswipe 0.16 0.68 1.23 
4 Preevent = otherveh_lanechange 0.28 0.68 1.22 
5 Eventnature = conflict_adjacent 0.33 0.67 1.21 
6 Reacttime = shorter than 0.5 s 0.31 0.66 1.19  

3-item rules ("supervised" item: secondary task ¼
yes)    

7 Eventnature = conflict_adjacent + Evasivemaneuv =
steered 

0.05 0.86 1.55 

8 Premaneuv = changelane + Preevent =
otherveh_lanechange 

0.12 0.82 1.49 

9 Premaneuv = changelane + Driverbehav =
improperdriving 

0.10 0.82 1.48 

10 Eventnature = conflict_adjacent + Reacttime =
shorter than 0.5 s 

0.20 0.78 1.42 

11 Hansonwheel = both + Reacttime = shorter than 0.5 
s 

0.13 0.75 1.36 

12 Evasivemaneuv = brakedandsteered + Reacttime =
shorter than 0.5 s 

0.11 0.69 1.25 

13 ACC_LKA = yes + Reacttime = shorter than 0.5 s 0.09 0.69 1.25 
14 ACC_LKA = no + Reacttime = shorter than 0.5 s 0.23 0.65 1.17 
15 Weather = overcast/raining + Reacttime = shorter 

than 0.5 s 
0.08 0.64 1.16 

16 Driverbehav = improperdriving + Reacttime =
shorter than 0.5 s 

0.15 0.64 1.16  

4¡5-item rules ("supervised" item: secondary 
task ¼ yes)    

17 Eventnature = conflict_adjacent + Locality =
interstate/divided hwy + ACC_LKA = no + Reacttime 
= shorter than 0.5 s 

0.10 0.86 1.55 

18 Eventnature = conflict_adjacent + Weather = clear/ 
partly cloudy + Locality = interstate/divided hwy +
Reacttime = shorter than 0.5 s 

0.12 0.85 1.53 

19 Premaneuv = changelane + Eventnature =
conflict_adjacent + Locality = interstate/divided hwy 

0.11 0.84 1.53 

20 Hansonwheel = both + Weather = clear/partly 
cloudy + Reacttime = shorter than 0.5 s 

0.10 0.83 1.50 

21 Eventnature = conflict_adjacent + Driverbehav =
improperdriving + Hansonwheel = onehand 

0.10 0.83 1.50 

22 Preevent = otherveh_lanechange + Weather = clear/ 
partly cloudy + Locality = interstate/divided hwy +
Reacttime = shorter than 0.5 s 

0.10 0.83 1.50 

23 Premaneuv = changelane + Preevent =
otherveh_lanechange + Eventnature =
conflict_adjacent 

0.11 0.82 1.48 

24 Driverbehav = none + Weather = clear/partly cloudy 
+ Reacttime = shorter than 0.5 s 

0.11 0.82 1.48 

25 Driverbehav = none + ACC_LKA = no + Reacttime =
shorter than 0.5 s 

0.11 0.81 1.47 

26 Preevent = otherveh_lanechange + Eventnature =
conflict_adjacent + Locality = interstate/divided hwy 
+ Reacttime = shorter than 0.5 s 

0.14 0.80 1.45 

* S-support, C-confidence, L-lift. 
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yes}. This rule indicates that the hands-on-wheel status is one hand for 
these near-crash events with secondary tasks. A majority of secondary 
tasks require the involvement with at least one hand. This could intro-
duce the extra risk of less control of the vehicles, especially when the 
reaction time becomes longer for these drivers distracted by performing 
the secondary tasks. The complex combination of items shows these 
safety-critical events like near-crashes are often a combination of many 
factors, such as driving on a highway with a presumably stable and 
predictable traffic condition, performing secondary tasks, being 
distracted, one hand on the wheel, leading vehicle suddenly slowed or 
stopped. 

4.3.2. Patterns for Near-Crash events without secondary tasks 

4.3.2.1. 2-item rules. The first six rules in Table 7 are 2-item rules with 
high lift values, which state the strong association between the ante-
cedent and fixed RHS item {secondary task = no}. The first rule is 
{Premaneuv = changelane, secondary task = no}. Its evaluation indices are 
support = 15 %, confidence = 74 %, and lift = 1.35. These indices mean 
that 15 percent of near-crash events in the data contains these two items. 
Out of these events containing lane change behavior item, 74 percent of 
them are near-crash events without any secondary task involvement. 
The lane change behavior is highly associated with the near-crash events 
without secondary tasks. Rule 4 also points out that other vehicle lane 
change behavior is highly associated with this type of near-crash event. 
Since this type of near-crash dominantly associated with lane change 
behaviors the participant vehicles or other vehicles, it is expected to find 
out this type of near-crash also highly associated with the sideswipe 
incident type (rule 3 {Incidenttype = sideswipe}) and event nature as 
conflict with adjacent vehicle (rule 5 {Eventnature = conflict_adjacent}). 
Another interesting rule in this 2-item rule set is the sixth rule {Reacttime 
= shorter than 0.5 s, secondary task = no}. The shortest reaction time 
category, less than 0.5 s, is highly associated with the near-crash events 
without secondary tasks. Without the distraction from the secondary 
tasks, the reaction to the emergency events tends to be quicker. 

4.3.2.2. 3-item rules. Rules 7–16 are ten 3-item rules with the highest 
lift values of the near-crash event without secondary tasks. Rule 7 is 
{Eventnature = conflict_adjacent, Evasivemaneuv = steered, secondary task 
= no}. The evaluation indices are support = 5%, confidence = 86 %, and 
lift = 1.55. Out of 235 near-crash events, there are 5 percent of them 
contain these three items. This amount is not particularly surprising. 
However, in all events containing the antecedent items {Eventnature =
conflict_adjacent, Evasivemaneuv = steered}, 86 percent did not perform 
any secondary tasks. A higher than 1 lift value indicates the high asso-
ciations between the antecedent and the near-crash event without a 
secondary task. To interpret it in plain words, the drivers near-crashes 
that conflict with adjacent vehicles, and the driver were able to steer 
the wheel to avoid collision are mostly likely without performing any 
secondary tasks. Rule 8 explains another common near-crash scenario - 
both participant vehicles and adjacent vehicles change lanes at the same 
time period. This scenario is highly associated with no secondary tasks. 
The lane change behavior generally requires more attention from 
drivers. Thus, it is rare to find that lane-changing drivers still perform 
secondary tasks. 

Rule 11 {Hansonwheel = both, Reacttime = shorter than 0.5 s, sec-
ondary task = no} indicates for drivers without performing secondary 
tasks often have both hands on the wheel, and the reaction time to the 
emergency often fast, less than 0.5 s. Rules 13 and 14 states that with or 
without an automated driving system (ACC_LKA) active, the drivers who 
did not perform the secondary task were able to react to the incident in a 
short time, less than 0.5 s. Rule 15 depicts the high association between 
inclement weather, short reaction time, and near-crash events without 
secondary tasks. The possible explanation could be that driving in 
inclement weather, drivers are less likely to perform the secondary tasks, 

and their reaction time is short in a driving environment filled with 
uncertainty. 

4.3.2.3. 4− 5-item rules. Rules 17–26 are the rules with 4 or 5 items for 
near-crash events without secondary tasks. Rules with more items show 
more complex patterns. Rule 17 is {Eventnature = conflict_adjacent +
Locality = interstate/divided hwy + ACC_LKA = no + Reacttime = shorter 
than 0.5 s, secondary task = no}. This rule presents the combination of 
features that are highly associated with near-crashes without secondary 
tasks. The items associated with lane changes, {Eventnature = con-
flict_adjacent} and {Premaneuv = changelane}, have a dominant presence 
in 7 rules out of 10 rules (rules 7–19, 21–23, and 26). The dominance of 
this item in this rule set further highlights the high associations between 
the lane change behavior and near-crashes without secondary tasks. The 
locality item {Locality = interstate/divided hwy} shows in 4 out of 10 rules 
(rules17, 18, 19, 26). For example, rule 19 {Premaneuv = changelane +
Eventnature = conflict_adjacent + Locality = interstate/divided hwy, sec-
ondary task = no} demonstrates the strong correlation between the near- 
crashes without secondary tasks and the combination of lane changing 
behaviors on the interstate or divided highways. To clarify the possible 
confusion, this does not suggest that highway is a hot spot of near-crash 
events or lane changing behavior is the dominant cause of the near-crash 
event. This rule can tell that many near-crashes without involvements in 
performing any secondary tasks occur on highways while the lane 
changing movements occur. 

5. Summary and comparison 

5.1. Near-crash events with the involvement of secondary tasks  

• The drivers are often distracted by performing secondary tasks. Most 
secondary tasks would distract drivers’ attention from focusing on 
the road.  

• The most common cause of this near-crash type is the leading vehicle 
suddenly slowed or stopped, which leads to the vehicle conflict with 
the leading vehicle, and the dominant incident type is rear-end near- 
crash. The drivers who perform any kind of secondary task are nor-
mally confident with their driving environment. Their perception of 
the driving environment is stable and predictable. When the leading 
vehicle suddenly slowed or stopped, the crash or near-crash events 
take place. This also explains the prevalence of locality items – 
interstate or highway in the rules. The traffic conditions often more 
stable on the interstate highway and divided highways because of 
fewer interruptions from traffic control devices or unexpected 
incidents.  

• The rules also find that near-crash often has a relatively long reaction 
time, longer than 1 s. Without full attention on driving, it is 
reasonable to take a longer time to react to the emergency.  

• The rules indicate that the most common evasive maneuver of 
avoiding the possible crash is braked only. Without enough reaction 
time to evaluate the driving environment and surroundings, the most 
direct response is the hard press on the brake. 

5.2. Near-crash event without the involvement of secondary tasks  

• The most dominant item of this dataset is the lane changing behavior 
of the participant vehicle or vehicles from an adjacent lane. The rules 
also found that when both lane changing behaviors occur simulta-
neously, the likelihood of near-crash is very high. The dominant item 
associated with this type of crash also leads to another frequent item 
– sideswipe incident type.  

• The rules state the evasive maneuver pattern for this type of crash is 
either steered or braked and steered.  

• A relatively short reaction time, less than 0.5 s, is highly associated 
with this type of near-crash. While drivers are paying more attention 
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to the road, instead of conducting secondary tasks, the reaction to the 
emergency is quick.  

• The results also found that with or without the automated driving 
system active, the reaction time is short if the drivers’ attention is on 
the driving.  

• The analysis indicates that the near-crash that occurs during 
inclement weather often has a short reaction time. With the un-
certainties in the driving environment, drivers often are more 
focused on driving. 

5.3. Comparison and countermeasures  

• Drivers who do not perform secondary tasks are less likely to be 
distracted. As more statistics proving the association between 
distracted drivers and crashes, limiting the frequency of the sec-
ondary task should be a more serious and important topic in traffic 
safety education.  

• The majority of near-crashes with the involvement of secondary 
tasks are because of drivers’ overconfidence of the presumably pre-
dictable driving environment, such as driving on an interstate 
highway. The most common event is the leading vehicles suddenly 
slowed or stopped. However, for near-crashes without the involve-
ment of secondary tasks, the most common trigger is lane-changing 
behaviors. With the full attention on the roadway, the sudden slow 
down or stop of the leading vehicles often do not lead to near-crash 
events for drivers without performing any secondary tasks. The 
countermeasures for mitigating these two types of near-crashes could 
be utilizing the advancement of the automated driving system. For 
example, future vehicles could use wheels or sensors to detect the 
secondary task occurrence. If the secondary task is detected, since 
the most common near-crash scenario for the distracted driver is the 
leading vehicle suddenly slowed or stopped, the vehicle’s front dis-
tance with the leading vehicle detection sensitivity can be auto-
matically adjusted to the highest level. Thus, the auto-braking system 
would be activated if an emergency occurs in the first place. For near- 
crash without secondary tasks involved, the possible solution would 
be to enlarge the radar detection range. Therefore, the radar sensor 
does not only detect the leading vehicles but also detects the vehicles 
in adjacent lanes. The sensor’s sensitivity should increase to the 
highest level while performing lane-changing, especially on inter-
state or divided highways.  

• Drivers not performing secondary tasks often have both hands on the 
wheel and react faster to emergency incidents, such as collisions. 
This finding can also be incorporated in traffic safety education to 
encourage drivers to drive with both hands on the steering wheel.  

• Both near-crash events suggest that the interstate highway or divided 
highway are highly associated with near-crash events. As mentioned 
above, the traffic conditions on these roadways are often stable and 
presumably predictable. Drivers may become overconfident about 
driving and started to perform secondary tasks. Meanwhile, highway 
often has higher speeds, and fewer interruptions and lane change 
behavior could happen fast without a full investigation of the driving 
surroundings, especially when two vehicles try to merge to the same 
lane at the same time. Highways are commonplace where near-crash 
occurs, and the consequence of the incident normally is more severe 
due to the high speed. The countermeasure in the second point could 
also be applied here. In the future, if the automated driving system 
can detect secondary tasks and automatically increase detection 
sensitivity and range, the highway is where the level of sensitivity 
should be set to the highest. 

6. Conclusions 

This study utilized a naturalistic research dataset to mine the pat-
terns of near-crash events from the viewpoint of secondary task 
involvement. This dataset contains many unique features related to 

near-crash events, such as the vehicle maneuver before the near-crash, 
the evasive maneuver of the vehicle when the near-crash occurs, the 
driver’s behavior before the near-crash, the driver’s distraction status 
before the near-crash, and the hands-on-wheel status of the driver. The 
association rules mining algorithm has been applied to the categorical 
datasets regarding the secondary task involvement, and 58 2-item as-
sociation rules, 353 3-item association rules, and 255 4− 5-item rules 
were mined. The Top twenty-six rules with the highest lift values in each 
category, near-crash events with or without secondary tasks, are 
collectively interpreted and summarized. The findings are unique and 
interesting. For example, the patterns show that the majority of near- 
crashes that involved performing secondary tasks were rear-end 
crashes due to the leading vehicle suddenly slowing or stopping. On 
the contrary, for near-crashes without the involvement of a secondary 
task, they are less likely to be rear-end crashes and more likely to involve 
conflicts with adjacent vehicles while changing lanes. 

These interesting findings could help transportation researchers and 
engineers better understand the nature of near-crash events and 
comprehend the potential risks of performing secondary tasks. This 
study proves that the drivers who perform secondary tasks are more 
likely to be involved in rear-end near-crashes, which are preventable. 
The research also shows that near-crashes can occur during lane- 
changing situations involving drivers with their full attention on the 
roadways. Improved blind spot detection may help reduce the occur-
rence of this type of near-crash. For example, currently, the majority of 
blind spot detection technologies often detect vehicle movement at 
adjacent lanes. However, the system may fail when two vehicles from 
different lanes tend to the same lane at the same time. The findings of 
this study would encourage future vehicle engineers to enlarge the 
detection areas and alert the driver when the projected trajectories of 
the non-adjacent vehicles may lead to potential conflicts. 

The current study has several limitations. First, the sample size of the 
database is small. A larger dataset can help in dividing the databases into 
training and test data to validate the generated rules. Second, secondary 
tasks can be categorized into various types. The intensity and duration of 
the secondary task being performed on roadways with different posted 
speed limits can produce different outcomes. Future studies can explore 
the nature of the secondary tasks to justify the outcomes of the generated 
rules. Third, like any other traffic safety data analysis, the effect of latent 
variable such as peak-hour may influence the modeling outcomes of this 
study. Last but not the least, the dataset anonymized participants to 
avoid the possible misuse of these information. However, if these pieces 
of information were available, more in-depth analysis could be done and 
more interesting results can be discovered. 
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